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8 The problem of the specification of artifical outflow conditions in 

flow problems is studied. It is shown that for transport type equations 

incorrect outflow conditions will adversely affect the solution only in a 

small region near the outflow boundary, while for elliptic equations, e.g., 

those governing the streamfunction or pressure, a correct boundary specifi- 

cation is essential. In addition, integral outflow boundary conditions for 

fluid dynamical problems are considered. 

are well posed, and their effect on the solutions of the Navier-Stokes equa- 

tions is also Considered. 

It is shown that such conditions 
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I. Introduction 

The selection of appropriate boundary conditions to use on outflow 

regions has been a classical problem in computational fluid dynamics. 

Normally, the outflow boundaries are artificial in the sense that they are 

arbitrarily supplied so that the physical problem can be defined in a 

bounded region. 

a flow in an expanding channel. 

the problem. Thus along AG in Figure 1 we specify u and v which are 

the x and y components of the velocity field. Along a solid wall 

such as AC the correct boundary conditions are that there is no flow 

through the wall, i.e., v = 0, and with viscous forces present, that 

there is no flow tangent to the wall, i.e., u = 0. The problem arises 

at the outflow CD. This line was added in order to make the computational 

domain, R ,  finite, and since it occurs in the fluid itself, correct 

boundary condicions along this line are by no means clear either mathemati- 

cally or physically. 

a 

A typical situation is given in Figure 1, and represents 

The inflow conditions in effect define 

It is not surprising that the literature of the downstream boundary con- 

dition problem is apparently contradictory. 

numerical experiments that indicated that for transport type equations, al- 

most anything could be specified provided that the outflow boundary (such as 

BC in Figure 1) was far enough downstream, i.e., away from corner points such 

as E. On the other hand Roache [ 2 ]  specifically suggests the use of down- 

stream continuation which in effect sets second derivatives equal to zero 

on the outflow BC. 

For example, Cheng [l], reported 

In this paper we show that if the problem is formulated in terms of the 

streamfunction $ and the vorticity 5 



then any specification of vorticity on the outflow yields sufficiently 

accurate solutions of E q .  (1.1) independent of the downstream position of 

the outflow boundary. Indeed, a change in the outflow specification of the 

vorticity will affect the solution only in a small boundary layer near the 

outflow. This is verified in Section I1 for one dimensional problems and 

in Section 111 for two dimensional problems. In addition, it is verified 

for a representative difference scheme. 

On the other hand the situation is entirely different for the elliptic 

equation (1.2). Differences in outflow specification significally propagate 

into the interior and therefore it is crucial that the correct outflow condi- 

tion on the streamfunction be specified. Thus as the outflow is moved far 0 

downstream it is known that indeed 

or alternately, since one knows the flow at large distances from E, one 

could just as well specify I) or along CD. However, if the outflow 

is moved in or if one is dealing with problems where there are no known 

asymptotic downstream solutions, specification of these quantities will yield 

spurious solutions. 

2 a2$/ax approaches zero on the outflow, 

In many problems of the latter type integral conditions on the flow can 

be accurately estimated. For example, in limited region ocean circulation 

problems, mass flows, i.e., volume integrals of the flow, can be measured [3]. 

In this paper we consider, apparently for the first time, integral boundary 

conditions for Eqs. (1.1) and (1.2). Conditions of this type are included in 

the work presented in Section I1 and 111. Moreoever, in Section IV we indicate 

that such problems are well posed and that a representative finite difference 

scheme is not adversely affected by t he  i n t e g r a l  boundary conditions. 

c 
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11. A Simple 1-D Example for the Transport Equation 

We wish t o  study the effects due to the specification of outflow condi- 

tions on a transport equation such as Eq. (1.1). To illustrate the main 

ideas we begin with the linear equation 

2 aw aw 1 a w  
at ax ax2 

+ -  = - - - 

At the inflow, x = 0 ,  we specify 

w(0,t) = Win(t). 

Three alternatives will be considered for outflow boundary conditions, two 

of which are in common use. The first condition, hereafter Option A ,  is to 

specify 

The second, commonly called downstream continuation and in this paper 

denoted as Option B y  is 

2 a2w/ax (1,t) = 0. 

Option C is the integral condition 

1 

0 

Other outflow conditions, such as specifying the first derivative, could 

also be considered. Their effects could be deduced in a smilar manner to 

the following development for Options A ,  By and C .  

The disadvantages of Options A and C are that one does not usually know 

W and m. The disadvantage of Option B is that it may not be consistent 

with the type of flow that is being modeled. There is also the mathematical 

out 
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problem involved with the specification of higher order derivatives on the 

boundary. We assert, nevertheless, that in each case the errors in the 

solution of Eq. (2.1) are restricted to an outflow boundary layer. 

Before proving these assertions, let us consider discrete analogs for 
L 

E q s .  (2.1) - (2.5). To keep the analysis simple, we choose the simple expli- 

cit finite difference approximation to E q .  (2.1) 

(2.6) 
n+l n n n n n n  (wj - w . ) / T  + = (W~+~-~W.+W~ J -,)/Rh2 

J 

> for 1 < j I J - 1 and n - 0, where J = l/h, h and 'I are the uniform 

grid sizes in x and t, respectively, and w w(jh,n-r). The three boun- 

dary conditions in addition to the inflow condition 

n 
j 

n 
0 in w = w (n-r) (2.7) 

are 

wn = w (n-r) A: J out 

n n n w - 2 w  + w  = o  J J-1 5-2 B: 

c 

and 

(2. l o )  
j =O 

The last equation is obtained from Eq.  (2.5) via trapezoidal quadratures. 

Before analyzing E q s .  (2.1) - (2.5) and E q s .  (2.6) - (2 .10) ,  we report 

some numerical experiments. First we consider the problem whose exact solu- 

tion is known, namely 

2 W(x,t> = sin(ax-at) exp(-a t/R). 



. 

. 

Then, for our computations we take the inflov and initial conditions to be 

w(0,n.r) and W(jh,O), respectively. We arbitrarily specify wout = m = 0 

so that all three outflow conditions are in error. Figures 2 and 3 show 

the pointwise error resulting from the computations, %.e. 

n En = w - W(jh,n-c) 
j j  

as a function of x for different values of t. The parameters used are 

J = 50, 

The initial condition on W is also shown in order to provide a reference 

scale. Note that for all three options, En Z 0 for a large part of the 

domain 0 x 5 1 and that En 8 0 only near the outflow boundary. The 

thickness of the region in which errors occur is essentially the same for 

all three options. Furthermore, for R = 20, the thickness of the boundary 

layer is smaller than for 

C, where the boundary layer is quite pronounced. 

it can be shown for all three options that the boundary layer thickness 

obeys the empirical relation 

T = .001, a = 4 . 5 1 T ,  R = 10 for Figure 2 and R = 20 for Figure 3. 

j 

J 

R = 10. This is especially evident for Option 

In fact, from tabular data, 

6 

6 % 1/R (2.11) 

where 6 = 1-x and x is the smallest value of x at which the error is 

a given small percentage of the maximum error along a particular curve. The 

relation (2.11) is largely independent of the choice of the "given small per- 

centage. " 

B B 

We next turn to an example, again for Eq. (Z.l), whose transient solution 

is not known, but f o r  which the graph of the solution is simple enough so 

that the transient can be easily followed. We consider 

2 2  w ( x , O )  = b e x p i - ( x - c )  /d 1 and w ( 0 , t )  = 0 
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to be the initial and inflow conditions, respectively. Then the steady 

state solution of Eq. (2.1) in the semi-infinite domain 0 5 x 03 is zero. 

We take as outflow conditions 

2 2  
W = A , a w/ax lXz1 = B and m = c out (2.12) 

so that all three outflow conditions are in error, even in the steady state. 

A ,  B, and C are interpreted as being errors in the specification of the 

corresponding outflow condition. Figure 4 shows w as a function of x 

for different values of t with J = 50, T = .0025, b = 10, c = .8, d = .05, 

and A = B = C = 1. The steady state solution fails to vanish only in a region 

near the outflow boundary regardless of the option chosen so that again, 

errors due to the incorrect specification of outflow conditions are trapped 

in a boundary layer near the outflow. 

numbers confirm the reciprocal relation (2.11). For Figure 5, the computa- 

tions of Figure 4 are repeated for A = B = C = 0 ,  so that the outflow con- * 

ditions are correct for the steady state but not for the transient solution. 

The correct steady state is now achieved for all x for all three options. 

Furthermore, comparing Figures 4 and 5, we see that except for a small region 

near the outflow, all six transient solutions are in good agreement. This 

indicates that away from the outflow boundary, the transient solution is 

correctly computed not only regardless of which option is chosen, but indepen- 

dent of the actual numerical values of A ,  B, and C chosen in Eq. (2.12). 

Experiments at different Reynolds' 

Many other experiments were performed, both on Eq. (2.1) and on nonlinear 

equations such as Burgers' equation. 

reported above was reproduced, and therefore it seems that this behavior is 

unaffected by the nonlinearities of the differential equation or by compli- 

cations on the inflow and initial conditions. 

In all cases the boundary layer phenomena 



. 

We now turn to the analysis of the continuous equation (2.1) and of it8 

discrete approximation Eq. (2.6). 

tion of Eq. (2.1) with win 0 and outflow conditions given by Eq. (2.12). 

Also sham is the behavior of w for different values of E = l-x and R. 

Note that away from x = 1, all solutions decay exponentially. Since the 

solution of the steady state problem without the artificial outflow boundary 

is identically zero, we see that introducing the artificial boundary causes 

an error only near x = 1. In fact, using our definition of boundary layer 

Table I liete the exact steady state.solu- 

thickness we see that 6 -Iln(J/R where (J is the "given small percentage." 

This verifies the experimental result Eq. (2.11). 

Referring to Table I, Option B seems to have the advantage of the factor 

1/R2 in the erroneous boundary layer solution. However, experience shows 

that errors in the second derivative specification, i.e. B, can often be 

large, especially when finite disturbances are advecting out of the region 

at the outflow. Therefore, the advantage of the 1/R2 factor may be lost 

due to the largeness of B. On the other hand, Option C seems to have the 

disadvantage of having a solution proportional to R in the boundary layer. 

However, due to the exponential decay factor, this does not appreciably affect 

the solution outside the boundary layer. In fact, at larger Reynolds' number, 

this "large" solution may help identify the boundary layer. 

Table I1 lists the exact steady state solution of Eq. (2.6) and the 

asymptotic rates of convergence (as R = Rh/2 -t 0) to the continuous solution. 

Note that all three options yield discrete solutions which converge to the 
C 

corresponding continuous solution. Therefore as R * 0, the discrete solu- 

tions exhibit the same boundary layer behavior as the continous solutions. 

C 

Options B has a slower rate of convergence because of the one sided difference 

used in Eq. (2.9). 
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Although the above results are for the steady state, a simple perturba- 

tion analysis of the unsteady equations show that similar results also hold 

for the transient solution. Furthermore, we emphasize that the appearance 

of the boundary layer phenomena near the outflow is in no way tied to the 

particular choice of discrete approximation used above, e.g. Eq. (2.6).  

approximation was chosen solely for its simplicity. 

This 

111. A 2-D Example for the Navier-Stokes Equations 

In this section we present computational results for the vorticity and 

Three options for the 

Options B and C are analogous to those 

streamfunction in the channel depicted in Figure 1. 

outflow conditions are considered. 

in Section 11, while for the sake of variety, Option A of that section is 

replaced by Option A; a specification of first derivatives. 

(1.2) are discretized by the use of the simple explicit finite difference 

scheme in which time derivatives are approximated by a forward difference 

quotient, i.e., 

Eqs. (1.1) and 

and space derivatives are approximated by centered difference quotients, e.g., 

and 

where 
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and T, h and k are the step sizes in 

inflow boundary (AG in Figure 1) the flow is assumed t o  be a fully developed 

Poiseuille flow so that [4] 

t, x, and y, respectively. At the 

(4U/d) (1-2y/d) (3.1) 
2 

= 4Ud(y/d) (1/2-y/3d) and Gin @in 

where d is the distance AG and U is the maximum velocity of the 

Poisseuille profile. 

walls the streamfunction is given by 

Consistent with Eq. (3.1), along the upper and lower 

= o  $low and @up = 2Ud/3 

respectively. 

[2] ,  e.g., along the wall AC 

The wall vorticities are calculated using the Thorn formula 

The initial conditions are C(t=O> = $(t=O) = 0 and our aim is to compute the 

steady state solutions for 5 and +. The fixed parameters used in computing 
the results discussed below are R = 20, h = k = 1/16, T = 1/400, d = 1/2, 

the distance GE = 1/2, and the distance CD = 1. 

In order to complete the specification of the problem we must fix the posi- 

tion of the outflow CD, i.e., choose the distance ED, and then specify out- 

flow conditions on both < and $. For two of these we choose the specifi- 

cation of the first derivative 

the specification of the second derivative 

2 2  2 n n n B: h (a $/ax ) I C D  = $I,j - "1-1,j + +1-2,j (3.3) 
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and likewise for 5 ,  where I is the index corresponding to the line CD. 

For Option C we could approximate the integral 

where % and "L are respectively the coordinates 5 and similarly for 

of the line CD and of some vertical line to the left of CD. However, 

approximating these integrals would destroy the compact nature of the 

approximating scheme since, for instance, any point on the line CD would 

be coupled to all the points whose y coordinate is smaller. This coupling 

Is - can be alleviated in two ways, and we use one on 

Therefore, we impose the outflow conditions 

and the other on 

which can be approximated by 

I- 1 

C: l'(nT,jk) = h($n 2 I-P,J . + 2 c  'i, j JI (3.5a) 
, i=I-p+l I 

and 
I 

(3.5b) n n 

i-I-p+l 
I 

is 
I' when 5 and % are chosen so that % - 3 = ph. The choice for 

particularly important because it preserves the bandwidth of the matrix 

appearing in the discrete approximation to E q .  (1.2). 

We first choose to place the outflow boundary CD "far" downstream, 

e.g. ED = 4d = 2, and we then assume that at this position the flow has 

settled into a fully developed Poiseuille flow in a channel of width 2d. 

Then the left hand sides of E q s .  (3.2), ( 3 . 3 ) ,  and (3.5) may be computed 

-10- 



a n a l y t i c a l l y  by using Eq. (3.1) with (y/d) replaced by (y+d)/2d. -Cmpsr -  

t a t i o n a l  r e s u l t s  show t h a t  t h e  so lu t ions  due t o  t h e  t h r e e  op t ions  fcm Idbe 

outflow condi t ion  are i d e n t i c a l  i n  the  sense  t h a t  t h e i r  po in twise  digfiefferrces 

( s u i t a b l y  sca l ed  by average values  of t h e  v a r i a b l e s )  are uniformly le% than 

which i s  considerably l e s s  than t h e  d i s c r e t i z a t i o n  e r r o r  of tk fjiaite 

d i f f e r e n c e  scheme. 

accu ra t e  outf low condi t ions  on both $ and <. This  c a l c u l a t i o n  vag. mr- 
formed i n  o rde r  t o  provide a benchmark f o r  t h e  computations repor ted  below. 

These r e s u l t s  a r e  no t  s u r p r i s i n g  s i n c e  we have 

W e  now move t h e  outflow boundary CD "close" t o  t h e  corner  p o i n t  F by 

choosing ED = d = 1 / 2  (o r  xm = 1 ) .  

c a l c u l a t i o n  t o  eva lua te  t h e  l e f t  hand s i d e s  of t h e  outf low cond i t ions  figs. ( 3 . 2 ) ,  

( 3 . 3 ) ,  a d  (3.5). The computational r e s u l t s  f o r  a l l  t h r e e  op t ions  are again  

i n d i s t i n g u i s h a b l e  from each o the r  and from t h e  above "exact" c a l c u l a t i o n .  

This  shows t h a t  f o r  any type outflow condi t ion ,  inc luding  i n t e g r a l  cond i t ions ,  

a c o r r e c t  s p e c i f i c a t i o n  w i l l  y i e ld  c o r r e c t  s o l u t i o n s  even when t h e  outf low 

is i n  a region of s i g n i f i c a n t  flow changes. 

W e  u se  t h e  r e s u l t s  of t h e  above "exact" 

With the  outf low s t i l l  a t  x = 1, we next  purposely choose inco r rec t  

outf low cond i t ions  f o r  both + and 5 by choosing the  l e f t  hand s i d e  of a l l  

outflow condi t ions  t o  be zero. The r e s u l t s  w e r e  poor f o r  a l l  t h ree  o p t  i ons .  

Typical  pointwise d i f f e r e n c e s  (again s u i t a b l y  sca led)  between these  ' a icu la-  

t i o n s  and t h e  "exact" ones described above were of t h e  o rde r  of 10-1 ", 

These r e s u l t s ,  denoted below a s  being " inco r rec t , "  i n d i c a t e  t h a t  if L * , S -  ')ut- 

flow cond i t ions  are i n c o r r e c t l y  spec i f i ed ,  then the  s o l u t i o n  w i l l  'DP ::.<-~ersely 

a f f e c t e d  everywhere. 

W e  now examine t h e  e f f e c t  of imposing c o r r e c t  outflow condi t ions  <--. $ 

and i n c o r r e c t  ones on 5 .  This  i s  of i n t e r e s t  because i t  is  i n  gene!>. niich 

easier t o  ob ta in  information on J I ,  which depends on i n t e g r a l s  of t h e  )-5:ocity, 
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than on 5 ,  which depends on d e r i v a t i v e s  of t h e  v e l o c i t y .  W e  l a b e l  t h i s  

c a l c u l a t i o n  "co r rec t - inco r rec t  .I1 I n  Figure 6 we  show /vE and 

along t h e  l i n e  FB of Figure 1 and i n  Figure 7 we  show 

(<,-<,)/YE and (< -5 )/eE along t h e  l i n e  HK of Figure 1 where t h e  

s u b s c r i p t s  I, C I ,  and E r e f e r  t o  t h e  " inco r rec t  ,I1 "correct- incorrect"  

C I  E 

and "exact" c a l c u l a t i o n s  r e s p e c t i v e l y ,  and t h e  b a r  i n d i c a t e s  t h e  average 

va lue  of the v a r i a b l e .  These r e s u l t s  are t y p i c a l  of t hose  throughout t h e  

flow f i e l d .  From both f i g u r e s  we  see t h a t  by imposing c o r r e c t  outf low con- 

d i t i o n s  on $, we can s i g n i f i c a l l y  improve t h e  s o l u t i o n .  The e r r o r s  of t h e  

co r rec t - inco r rec t "  run are, except nea r  t h e  outflow, t y p i c a l l y  smaller 11 

than h2 = 1/256 

For t h e  "incorrect1'  run, t h e  e r r o r s  are considerably l a r g e r  than h . I n  

Figure 7 ,  t he  boundary l a y e r  phenomena descr ibed i n  Sect ion I1 i s  n o t  as 

sha rp ly  evident because both t h e  e l l i p t i c i t y  of t h e  Poisson equat ion and 

t h e  non l inea r i ty  of the equat ions c o n t r i b u t e  t o  t h e  smearing of t h e  boundary 

l a y e r .  However, experiments a t  d i f f e r e n t  Reynolds' numbers confirm t h a t  t h e  

boundary l aye r  t h i ckness  decreases  with inc reas ing  Reynolds' number. Also 

no te  t h a t  f o r  t h e  "correct- incorrect"  run t h a t  Option C has a l a r g e  e r r o r  i n  

t h e  boundary l a y e r ,  but i n  t h e  i n t e r i o r  i t  is  of t h e  same magnitude as t h e  o t h e r  

opt ions.  This type of behavior i s  similar t o  t h a t  encountered i n  Sect ion 11. 

There is no reason why one should use  t h e  s a m e  type of outflow cond i t ions  

which is a l i b e r a l  estimate f o r  t h e  d i s c r e t i z a t i o n  e r r o r .  

2 

f o r  t h e  I) and 5. One could mix t h e  op t ions ,  choosing j u d i c i o u s l y  according 

t o  the  information a v a i l a b l e ,  o r  i n  t h e  absence of complete information, 

experimenting t o  determine which combination least  a f f e c t s  t h e  s o l u t i o n  of 

t h e  s p e c i f i c  problem considered. 

To summarize, t he  computational r e s u l t s  of  t h i s  s e c t i o n  i n d i c a t e  t h a t  an 

i n c o r r e c t  s p e c i f i c a t i o n  of outflow cond i t ions  w i l l  r e s u l t  i n  spurious solu- 

t i o n s  away from the  outflow boundary wh i l e  a c o r r e c t  s p e c i f i c a t i o n  w i l l  r e s u l t  

-12- 



i n  a c o r r e c t  s o l u t i o n  everywhere r ega rd le s s  of which op t ion  f o r  t h e  outflow 

cond i t ion  i s  chosen. Furthermore, t h e  r e s u l t s  of Sect ion I1 extend t o  two 

dimensions and t o  t h e  f u l l  Navier-Stokes equat ions i n  t h e  sense  t h a t  i f  w e  

c o r r e c t l y  s p e c i f y  J, a t  t h e  outflow, bu t  i n c o r r e c t l y  s p e c i f y  5 ,  then t h e  

e r r o r s  i n  t h e  s o l u t i o n  are small  for  l a r g e  p o r t i o n s  of t h e  computational 

domain and are l a r g e  only i n  t h e  v i c i n i t y  of t h e  outf low boundary. 

we have seen t h a t  i n t e g r a l  outflow cond i t ions  on both 5 and J, a r e  n o t  

only implementable, b u t  a f f e c t  the s o l u t i o n  of Eq. (2.1) i n  much t h e  same 

manner as commonly used outflow conditions.  

F i n a l l y ,  

IV. Analysis  of I n t e g r a l  Conditions f o r  t h e  Poisson Equation 

For a r b i t r a r y  two dimensional domains an at tempt  t o  prove t h a t  t h e  Poisson 

equat ion (1.2) with an i n t e g r a l  condition such as Eq. (3.4) imposed on p a r t  

of t h e  boundary (and D i r i c h l e t  data on t h e  r e s t )  c o n s t i t u t e  a w e l l  posed 

problem would l ead  u s  t o  a complicated a n a l y s i s  involving i n t e g r a l  equat ions.  

To avoid t h e s e  complications w e  consider t h e  model problem 

A U  = f i n  L? = [0 ,1 ]  x [0 ,1]  

rl u = O  on 

and 

Jydy ' jdxu(x,y ' )  = y(y) on 

0 a 

where a i s  a f ixed  number, 0 < a < 1, 

r2 = I (1,Y) I OSy<-l) ( 4 . 3 )  

and where rlUr = r ,  t h e  boundary 2 

of t h e  region R. Figure 8 shows the r eg ions  R and Ry, t he  l a t t e r  being 

the  domain of i n t e g r a t i o n  of t h e  i n t e g r a l  appearing i n  Eq. (4 .3) .  The c e n t r a l  

i dea  i n  our  a n a l y s i s  is t o  so lve  t h e  D i r i c h l e t  problem defined by Eqs. (4.1),  

( 4 . 2 )  and 
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u = e(y) on r2 , (4.4) 

and to choose 8 so that Eq.  (4.3) is satisfied. To do this we observe 

that the solution of E q s .  (4.1), (4.2), and (4.4) is 

where 

U (x , y I f 1 = IlG (x , Y , 5 , n) f ( 5 ,  rl d&rl , 
R 

G(-,*,*,*) is the Green's function for the homogeneous problem (Eq.  (4.1) 

plus u = 0 on l?) and g is the normal derivative of G restricted to 

We conclude that E q s .  (4.1), (4.2), and (4.3) have a (unique) solution 

if and only if 

r2 
has a (unique) solution. In Eq.  (4.5) 

and 

Simple calculations verify that 

(4.5) 

-14- 
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where 

Thus our integral equation ( 4 . 5 )  becomes 

and thus the unique solvability of Eq. ( 4 . 5 )  is clear. 

This calculation also shows that the mean square norm of second deriva- 

tives of u is bounded above by the mean square norm of f plus the 

"5/2 norm" of y, i.e., 

. 
where 

This shows that the problem is well posed in the sense that s m a l l  changes 

in y with respect to Eq. ( 4 . 6 )  leads to small changes in u, Vu and the 

second derivatives of u in the mean square sense. 

Turning to approximations let us consider a uniform grid with nodes at 

(ih,jh), 0 5 i, j 5 N = l/h. We approximate u(ih,jh) with ui where 
,j 

for 0 < i, j < l/h, and with 

-15- 



i = O ,  O L j < l / h  

O z i 5 1 / h , j = 0  

0 5 i l / h  , j = l / h  

U 
i , j  

. 

A t  t h e  nodes f o r  which x = 1, 0 < y < 1, w e  u s e  

1 --1 h 

( 4 . 9 )  

i=io 

f o r  0 < j < l / h .  W e  assume t h a t  a = ( i  h) and without l o s s  of g e n e r a l i t y  

w e  t a k e  f = 0. The exact  s o l u t i o n  is  thus  

0 

(4 .10)  

k-0 

A s t r a igh t fo rward  c a l c u l a t i o n  shows t h a t  t h e  s o l u t i o n  of t h e  Eqs. (4.7), 

(4 .8) ,  and 

is  given by 

%,j = 0 ( j h >  = E h  ek sin(k.rrjh) , 0 < j < l / h  

k=O 

l / h  
(4 .11)  

k-0 

With t h i s  r ep resen ta t ion  t h e  unique s o l v a b i l i t y  of Eq. ( 4 . 9 )  i s  clear once 

w e  no te  t h a t  

1Ih-1 
cosh(kIT) - cosh(kWT) 

h z { s i n h [ k n i h ]  2 + s i n h [ k ? ~ ( i + l ) h ]  k.rr 
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as h -+ 0. To be sure the difference between the trapezoidal rule quadra- 

ture on the left and the exact quadrature on the right is 

this it is easy to see that 

by O(h ). An additional calculation gives 

O(hL), and with 

Bk in Eq. (4.10) h 
Bk in Eq. (4.11) differs from 

2 

2 u(ih,jh) - u =O(h) as h + O .  
i,j 

Therefore the integral boundary condition Eq. ( 4 . 3 )  and its discrete imple- 

mentation Eq. ( 4 . 9 )  do not adversely affect the accuracy of the finite 

difference scheme. 
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TABLE I .  

S o l u t i o n  of t h e  s t e a d y  s t a t e  e q u a t i o n  wx = w / R  w i t h  w(0) = 0 xx 

OPT I ON EXACT 
SOLUTION 
w ( € ) = w ( l - x ) =  

BEHAVIOR 
FOR ER+O 

BEHAVIOR BEHAVIOR 
FOR FOR ~ = 0 ( 1 )  
ER=O( 1 ) 

w(1) = A 

w (1) = xx 

-R 1 - e  

[ - R E - ~ - R ]  B e  R 

R2 

A (  ~ - E R )  

B -( l - & R )  
R2 

Ae-RE 0 @e-") 

B -RE 
R 
- 

2 "  

r 1 

w ( x ) d x  = C CR Le-Rc-e-RJ CR( l - & R )  CRe-RE 0 (CRe-R) 
1 - ( l + R ) e - R  

r' 
0 
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TABLE 11. 

Solution of steady state difference equations. 

R = Rh/2 , X = (l+Rc)/(l-R,) , J = number of intervals. 
C 

OPT I ON EXACT SOLUTION OF 
DIFFERENCE EQUATIONS 

w =  
j 

ASYMPTOTIC ERROR 
AS Rc+ 0 

J wj - w ( x * )  = 

B 

A 

C 

A ( X J  - 1) 

(XJ - 1) 

Sh2(XJ - 1) 

(XJ - 2xJ-l  + A”-”> 

c ( h J  - 1) 

J A - A  d 

2 l - X  2 
+ - - J + -  
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F i g .  1. Flow in a channel. 



Fig. l t t e d  every 1 2 A t .  
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F i g .  3. En vs.  x f o r  R = 20, J = 50, A t  = .001. P l o t t e d  every 1 2 A t .  
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Fig. 4. w vs. x for incorrect steady state outflow conditions. 

(R = 25, J = 50, At = .0025; plotted every 30At). 
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Fig. 5. w vs. x for correct steady state outflow conditions. 

(R = 25, J = 50, At = .0025; plotted every 30At). 
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Fig. 6. Error in the steady state streamfunction at x = 1/2. [E = (y-u,)/Fk] 

(R = 20, AX = Ay = h = 1/16; I = "incorrect" calculation, 

IC = "incorrect - correct" calculation). 
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Fig.  7.  Error  i n  t h e  s t eady  s ta te  v o r t i c i t y  a t  y = 1 / 4 .  [E = (C-CE)/? 1 
E 

(R = 20, Ax = Ay = h = 1/16;  I = " incor rec t"  c a l c u l a t i o n ,  

IC = " inco r rec t  - cor rec t "  c a l c u l a t i o n ) .  
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Fig .  8. The regions 52 and Qy. 
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